

Introduction

The c-stdaux project contains support-macros and auxiliary functions around
the functionality of common C standard libraries. This includes helpers for the
ISO-C Standard Library, but also other common specifications like POSIX or
common extended features of wide-spread compilers like gcc and clang.

API

The c-stdaux.h header contains a collection of auxiliary macros and
helper functions around the functionality provided by the different C
standard library implementations, as well as other specifications
implemented by them.

Most of the helpers provided here provide aliases for common library and
compiler features. Furthermore, several helpers simply provide other calling
conventions than their standard counterparts (e.g., they allow for NULL to
be passed with an object length of 0 where it makes sense to accept empty
input).

The namespace used by this project is:

	c_* for all common C symbols or definitions that behave like proper C
entities (e.g., macros that protect against double-evaluation would use
lower-case names).

	C_* for all constants, as well as macros that may not be safe against
double evaluation.

	c_internal_* and C_INTERNAL_* for all internal symbols that
should not be invoked by the caller and are not part of the API
guarantees.

Target Properties

Since multiple target compilers and systems are supported, c-stdaux
exports a set of symbols that identify the target of the current compilation.
The following pre-processor constants are defined (and evaluate to 1) if
the current compilation targets the specific system. Note that multiple
constants might be defined at the same time if compatibility to multiple
targets is available.

	C_COMPILER_CLANG: The compiling software is compatible to the CLang
LLVM Compiler.

	C_COMPILER_DOCS: The compilation is part of generating documentation.

	C_COMPILER_GNUC: The compiling software is compatible to the GNU C
Compiler.

	C_COMPILER_MSVC: The compiling software is compatible to Microsoft
Visual Studio (use _MSC_VER to check for specific version support).

	C_OS_LINUX: The target system is compatible to Linux.

	C_OS_MACOS: The target system is compatible to Apple MacOS.

	C_OS_WINDOWS: The target system is compatible to Microsoft Windows.

	C_MODULE_GENERIC: The *-generic.h module was included.

	C_MODULE_GNUC: The *-gnuc.h module was included.

	C_MODULE_UNIX: The *-unix.h module was included.

Note that other exported symbols might depend on one of these constants to
be set in order to be exposed. See the documentation of each symbol for
details. Furthermore, if stub implementations do not violate the guarantees
of a symbol, they will be provided for targets that do not provide the
necessary infrastructure (e.g., _c_likely_() is a no-op on MSVC).

Guaranteed STD-C Includes

c-stdaux includes a set of C Standard Library headers. All those includes
are guaranteed and part of the API. See the actual header for a
comprehensive list.

Generic Compiler Intrinsics

This section provides access to compiler extensions and intrinsics which are
either portable or have generic fallbacks.

	
_c_always_inline_

	Always-inline attribute

Annotate a symbol to be inlined more aggressively. On GNUC targets this is
an alias for __attribute__((__always_inline__)). On MSVC targets this is
and alias for __forceinline. On other systems, this is a no-op.

	
_c_boolean_expr_(_x)

	Evaluate a boolean expression

	Parameters:

	
	_x – Expression to evaluate

Evaluate the given expression and convert the result to 1 or 0. In most
cases this is equivalent to (!!(_x)). However, for given compilers this
avoids the parentheses to improve diagnostics with -Wparentheses.

Outside of macros, this has no added value.

	Returns:

	Evaluates to the value of !!_x.

	
_c_likely_(_x)

	Likely attribute

	Parameters:

	
	_x – Expression to evaluate

Alias for __builtin_expect(!!(_x), 1).

	Returns:

	The expression !!_x is evaluated and returned.

	
_c_public_

	Public attribute

Mark a symbol definition as public, to be exported by the linker. On
GNUC-compatible systems, this is an alias for
__attribute__((__visibility__("default"))). On all other systems, this
is a no-op.

Note that this explicitly does not resolve to __declspec(dllexport) on
MSVC targets, since that would require knowing whether to compile for export
or inport and whether to compile for static or dynamic linking. Instead,
the _c_public_ attribute is meant to be used unconditionally on
definition only. For MSVC exports, we recommend module definition files.

	
_c_unlikely_(_x)

	Unlikely attribute

	Parameters:

	
	_x – Expression to evaluate

Alias for __builtin_expect(!!(_x), 0).

	Returns:

	The expression !!_x is evaluated and returned.

Generic Utility Macros

A set of utility macros which is portable to all supported platforms or has
generic fallback variants.

	
C_STRINGIFY(_x)

	Stringify a token, but evaluate it first

	Parameters:

	
	_x – Token to evaluate and stringify

	Returns:

	Evaluates to a constant string literal

	
C_CONCATENATE(_x, _y)

	Concatenate two tokens, but evaluate them first

	Parameters:

	
	_x – First token

	_y – Second token

	Returns:

	Evaluates to a constant identifier

	
C_EXPAND(_x)

	Expand a tuple to a series of its values

	Parameters:

	
	_x – Tuple to expand

	Returns:

	Evaluates to the expanded tuple

	
C_VAR(...)

	Generate unique variable name

	Parameters:

	
	_x – Name of variable, optional

	_uniq – Unique prefix, usually provided by __COUNTER__, optional

This macro shall be used to generate unique variable names, that will not be
shadowed by recursive macro invocations. It is effectively a
C_CONCATENATE of both arguments, but also provides a globally
separated prefix and makes the code better readable.

The second argument is optional. If not given, __LINE__ is implied, and
as such the macro will generate the same identifier if used multiple times
on the same code-line (or within a macro). This should be used if recursive
calls into the macro are not expected. In fact, no argument is necessary in
this case, as a mere C_VAR will evaluate to a valid variable name.

This helper may be used by macro implementations that might reasonable well
be called in a stacked fasion, like:

c_max(foo, c_max(bar, baz))

Such a stacked call of c_max() might cause compiler warnings of
shadowed variables in the definition of c_max(). By using
C_VAR(), such warnings can be silenced as each evaluation of
c_max() uses unique variable names.

	Returns:

	This evaluates to a constant identifier.

Generic Standard Library Utilities

The C Standard Library lacks some crucial and basic support functions. This
section describes the set of helpers provided as extension to the standard
library.

	
c_assume_aligned(_ptr, _alignment, _offset)

	Hint alignment to compiler

	Parameters:

	
	_ptr – Pointer to provide alignment hint for

	_alignment – Alignment in bytes

	_offset – Misalignment offset

This hints to the compiler that _ptr - _offset is aligned to the alignment
specified in _alignment.

On platforms without support for __builtin_assume_aligned() this is a
no-op.

	Returns:

	_ptr is returned.

	
c_assert(_x)

	Runtime assertions

	Parameters:

	
	_x – Result of an expression

This function behaves like the standard assert(3) macro. That is, if
NDEBUG is defined, it is a no-op. In all other cases it will assert that
the result of the passed expression is true.

Unlike the standard assert(3) macro, this function always evaluates its
argument. This means side-effects will always be evaluated! However, if the
macro is used with constant expressions, the compiler will be able to
optimize it away.

	
int c_errno(void)

	Return valid errno

This helper should be used to silence warnings if you know errno is valid
(ie., errno is greater than 0). Instead of return -errno;, use
return -c_errno(); It will suppress bogus warnings in case the compiler
assumes errno might be 0 (or smaller than 0) and thus the caller’s
error-handling might not be triggered.

This helper should be avoided whenever possible. However, occasionally we
really want to silence warnings (especially with static/inline functions). In
those cases, the compiler usually cannot deduce that some error paths are
guaranteed to be taken. Hence, making the return value explicit allows it to
better optimize the code.

Note that you really should never use this helper to work around broken libc
calls or syscalls, not setting ‘errno’ correctly.

	Returns:

	Positive error code is returned.

	
void *c_memset(void *p, int c, size_t n)

	Fill memory region with constant byte

	Parameters:

	
	p – Pointer to memory region, if non-empty

	c – Value to fill with

	n – Size of the memory region in bytes

This function works like memset(3) if n is non-zero. If n is
zero, this function is a no-op. Therefore, unlike memset(3) it is safe
to call this function with NULL as p if n is 0.

	Returns:

	p is returned.

	
void *c_memzero(void *p, size_t n)

	Clear memory area

	Parameters:

	
	p – Pointer to memory region, if non-empty

	n – Size of the memory region in bytes

Clear a memory area to 0. If the memory area is empty, this is a no-op.
Similar to c_memset(), this function allows p to be NULL if the
area is empty.

	Returns:

	p is returned.

	
void *c_memcpy(void *dst, const void *src, size_t n)

	Copy memory area

	Parameters:

	
	dst – Pointer to target area

	src – Pointer to source area

	n – Length of area to copy

Copy the memory of size n from src to dst, just as memcpy(3)
does, except this function allows either to be NULL if n is zero. In
the latter case, the operation is a no-op.

	Returns:

	p is returned.

	
int c_memcmp(const void *s1, const void *s2, size_t n)

	Compare memory areas

	Parameters:

	
	s1 – Pointer to one area

	s2 – Pointer to other area

	n – Length of area to compare

Compare the memory of size n of s1 and s2, just as memcmp(3)
does, except this function allows either to be NULL if n is zero.

	Returns:

	Comparison result for ordering is returned.

Memory Access

This section provides helpers to read and write arbitrary memory locations.
They are carefully designed to follow all language restrictions and thus
work with strict-aliasing and alignment rules.

The C language does not allow aliasing an object with a pointer of an
incompatible type (with few exceptions). Furthermore, memory access must be
aligned. This function uses exceptions in the language to circumvent both
restrictions.

Note that pointer-offset calculations should avoid exceeding the extents of
the object, even if the object is surrounded by other objects. That is,
ptr+offset should point to the same object as ptr. Otherwise, pointer
provenance will have to be considered.

	
uint8_t c_load_8(const void *memory, size_t offset)

	Read a u8 from memory

	Parameters:

	
	memory – Memory location to operate on

	offset – Offset in bytes from the pointed memory location

This reads an unsigned 8-bit integer at the offset of the specified memory
location.

	Returns:

	The read value is returned.

	
uint16_t c_load_16be_unaligned(const void *memory, size_t offset)

	Read an unaligned big-endian u16 from memory

	Parameters:

	
	memory – Memory location to operate on

	offset – Offset in bytes from the pointed memory location

This reads an unaligned big-endian unsigned 16-bit integer at the offset
of the specified memory location.

	Returns:

	The read value is returned.

	
uint16_t c_load_16be_aligned(const void *memory, size_t offset)

	Read an aligned big-endian u16 from memory

	Parameters:

	
	memory – Memory location to operate on

	offset – Offset in bytes from the pointed memory location

This reads an aligned big-endian unsigned 16-bit integer at the offset
of the specified memory location.

	Returns:

	The read value is returned.

	
uint16_t c_load_16le_unaligned(const void *memory, size_t offset)

	Read an unaligned little-endian u16 from memory

	Parameters:

	
	memory – Memory location to operate on

	offset – Offset in bytes from the pointed memory location

This reads an unaligned little-endian unsigned 16-bit integer at the offset
of the specified memory location.

	Returns:

	The read value is returned.

	
uint16_t c_load_16le_aligned(const void *memory, size_t offset)

	Read an aligned little-endian u16 from memory

	Parameters:

	
	memory – Memory location to operate on

	offset – Offset in bytes from the pointed memory location

This reads an aligned little-endian unsigned 16-bit integer at the offset of
the specified memory location.

	Returns:

	The read value is returned.

	
uint32_t c_load_32be_unaligned(const void *memory, size_t offset)

	Read an unaligned big-endian u32 from memory

	Parameters:

	
	memory – Memory location to operate on

	offset – Offset in bytes from the pointed memory location

This reads an unaligned big-endian unsigned 32-bit integer at the offset
of the specified memory location.

	Returns:

	The read value is returned.

	
uint32_t c_load_32be_aligned(const void *memory, size_t offset)

	Read an aligned big-endian u32 from memory

	Parameters:

	
	memory – Memory location to operate on

	offset – Offset in bytes from the pointed memory location

This reads an aligned big-endian unsigned 32-bit integer at the offset
of the specified memory location.

	Returns:

	The read value is returned.

	
uint32_t c_load_32le_unaligned(const void *memory, size_t offset)

	Read an unaligned little-endian u32 from memory

	Parameters:

	
	memory – Memory location to operate on

	offset – Offset in bytes from the pointed memory location

This reads an unaligned little-endian unsigned 32-bit integer at the offset
of the specified memory location.

	Returns:

	The read value is returned.

	
uint32_t c_load_32le_aligned(const void *memory, size_t offset)

	Read an aligned little-endian u32 from memory

	Parameters:

	
	memory – Memory location to operate on

	offset – Offset in bytes from the pointed memory location

This reads an aligned little-endian unsigned 32-bit integer at the offset
of the specified memory location.

	Returns:

	The read value is returned.

	
uint64_t c_load_64be_unaligned(const void *memory, size_t offset)

	Read an unaligned big-endian u64 from memory

	Parameters:

	
	memory – Memory location to operate on

	offset – Offset in bytes from the pointed memory location

This reads an unaligned big-endian unsigned 64-bit integer at the offset
of the specified memory location.

	Returns:

	The read value is returned.

	
uint64_t c_load_64be_aligned(const void *memory, size_t offset)

	Read an aligned big-endian u64 from memory

	Parameters:

	
	memory – Memory location to operate on

	offset – Offset in bytes from the pointed memory location

This reads an aligned big-endian unsigned 64-bit integer at the offset
of the specified memory location.

	Returns:

	The read value is returned.

	
uint64_t c_load_64le_unaligned(const void *memory, size_t offset)

	Read an unaligned little-endian u64 from memory

	Parameters:

	
	memory – Memory location to operate on

	offset – Offset in bytes from the pointed memory location

This reads an unaligned little-endian unsigned 64-bit integer at the offset
of the specified memory location.

	Returns:

	The read value is returned.

	
uint64_t c_load_64le_aligned(const void *memory, size_t offset)

	Read an aligned little-endian u64 from memory

	Parameters:

	
	memory – Memory location to operate on

	offset – Offset in bytes from the pointed memory location

This reads an aligned little-endian unsigned 64-bit integer at the offset
of the specified memory location.

	Returns:

	The read value is returned.

	
c_load(_type, _endian, _aligned, _memory, _offset)

	Read from memory

	Parameters:

	
	_type – Datatype to read

	_endian – Endianness

	_aligned – Aligned or unaligned access

	_memory – Memory location to operate on

	_offset – Offset in bytes from the pointed memory location

This reads a value of the same size as _type at the offset of the
specified memory location. _endian must be either be or le, _aligned
must be either aligned or unaligned.

This is a generic macro that maps to the respective c_load_*() function.

	Returns:

	The read value is returned.

Generic Destructors

A set of destructors is provided which extends standard library destructors
to adhere to some adjuvant rules. In particular, they return an invalid
value of the particular object, rather than void. This allows direct
assignment to any member-field and/or variable they are defined in, like:

foo = c_free(foo);
foo->bar = c_fclose(foo->bar);

Furthermore, all those destructors can be safely called with the “INVALID”
value as argument, and they will be a no-op.

	
void *c_free(void *p)

	Destructor-wrapper for free()

	Parameters:

	
	p – Value to pass to destructor, or NULL

Wrapper around free(), but always returns NULL.

	Returns:

	NULL is returned.

	
FILE *c_fclose(FILE *f)

	Destructor-wrapper for fclose()

	Parameters:

	
	f – File handle to pass to destructor, or NULL

Wrapper around fclose(), but a no-op if NULL is passed. Always
returns NULL.

	Returns:

	NULL is returned.

Generic Cleanup Helpers

A set of helpers that aid in creating functions suitable for use with
_c_cleanup_(). Furthermore, a collection of predefined cleanup
functions of a set of standard library objects ready for use with
_c_cleanup_().
Those cleanup helpers are always suffixed with a p.

The helpers that are provided are:

	c_freep(): Wrapper around c_free().

	c_fclosep(): Wrapper around c_fclose().

	
C_DEFINE_CLEANUP(_type, _func)

	Define cleanup helper

	Parameters:

	
	_type – Type of object to cleanup

	_func – Destructor of the respective type

Define a C static inline function that takes a single argument of type
_type and calls _func on it, if its dereferenced value of its argument
evaluates to true. Otherwise, it is a no-op.

This macro allows for very simple and fast creation of cleanup helpers for
use with _c_cleanup_(), based on any destructor and type you provide to
it.

	
C_DEFINE_DIRECT_CLEANUP(_type, _func)

	Define direct cleanup helper

	Parameters:

	
	_type – Type of object to cleanup

	_func – Destructor of the respective type

This works like C_DEFINE_CLEANUP() but does not check the
dereferenced value of its argument. It always unconditionally invokes the
destructor.

GNUC Compiler Attributes

The GCC compiler uses the __attribute__((__xyz__())) syntax to annotate
language entities with special attributes. Aliases are provided by this
header which map one-to-one to the respective compiler attributes.

These attributes are not supported by all compilers, but are always provided
by this header. They are pre-processor macros and do not affect the
compilation, unless used. Note that most compilers support these, not just
GCC.

	
_c_cleanup_(_x)

	Cleanup attribute

	Parameters:

	
	_x – Cleanup function to use

Alias for __attribute__((__cleanup__(_x))).

	
_c_const_

	Const attribute

Alias for __attribute__((__const__)).

	
_c_deprecated_

	Deprecated attribute

Alias for __attribute__((__deprecated__)).

	
_c_hidden_

	Hidden attribute

Alias for __attribute__((__visibility__("hidden"))).

	
_c_packed_

	Packed attribute

Alias for __attribute__((__packed__)).

	
_c_printf_(_a, _b)

	Printf attribute

	Parameters:

	
	_a – Format expression argument index

	_b – First format-parameter argument index

Alias for __attribute__((__format__(printf, _a, _b))).

	
_c_pure_

	Pure attribute

Alias for __attribute__((__pure__)).

	
_c_sentinel_

	Sentinel attribute

Alias for __attribute__((__sentinel__)).

	
_c_unused_

	Unused attribute

Alias for __attribute__((__unused__)).

GNUC-Specific Utility Macros

A set of utility macros is provided which aids in creating safe macros
suitable for use in other pre-processor statements as well as in C
expressions.

	
C_EXPR_ASSERT(_expr, _assertion, _message)

	Create expression with assertion

	Parameters:

	
	_expr – Expression to evaluate to

	_assertion – Arbitrary assertion

	_message – Message associated with the assertion

This macro simply evaluates to _expr. That is, it can be used in any
context that expects an expression like _expr. Additionally, it takes an
assertion as _assertion and evaluates it through _Static_assert(),
using _message as debug message.

The _Static_assert() builtin of C11 is defined as statement and thus
cannot be used in expressions. This macro circumvents this restriction.

	Returns:

	Evaluates to _expr.

	
C_CC_MACRO1(_call, _x1, ...)

	Provide safe environment to a macro

	Parameters:

	
	_call – Macro to call

	_x1 – First argument

	... – Further arguments to forward unmodified to _call

This function simplifies the implementation of macros. Whenever you
implement a macro, provide the internal macro name as _call and its
argument as _x1. Inside of your internal macro, you…

	are safe against multiple evaluation errors, since C_CC_MACRO1
will store the initial parameters in temporary variables.

	support constant folding, as C_CC_MACRO1 takes care to invoke your
macro with the original values, if they are compile-time constant.

	have unique variable names for recursive callers and will not run into
variable-shadowing-warnings accidentally.

	have properly typed arguments as C_CC_MACRO1 stores the original
arguments in an __auto_type temporary variable.

	Returns:

	Result of _call is returned.

	
C_CC_MACRO2(_call, _x1, _x2, ...)

	Provide safe environment to a macro

	Parameters:

	
	_call – Macro to call

	_x1 – First argument

	_x2 – Second argument

	... – Further arguments to forward unmodified to _call

This is the 2-argument equivalent of C_CC_MACRO1().

	Returns:

	Result of _call is returned.

	
C_CC_MACRO3(_call, _x1, _x2, _x3, ...)

	Provide safe environment to a macro

	Parameters:

	
	_call – Macro to call

	_x1 – First argument

	_x2 – Second argument

	_x3 – Third argument

	... – Further arguments to forward unmodified to _call

This is the 3-argument equivalent of C_CC_MACRO1().

	Returns:

	Result of _call is returned.

Standard Library Utilities

The C Standard Library lacks some crucial and basic support functions. This
section describes the set of helpers provided as extension to the standard
library.

	
C_ARRAY_SIZE(_x)

	Calculate number of array elements at compile time

	Parameters:

	
	_x – Array to calculate size of

	Returns:

	Evaluates to a constant integer expression.

	
C_DECIMAL_MAX(_arg)

	Calculate maximum length of a decimal representation

	Parameters:

	
	_type – Integer variable/type

This calculates the bytes required for the decimal representation of an
integer of the given type. It accounts for a possible +/- prefix, but it
does NOT include the trailing terminating zero byte.

	Returns:

	Evaluates to a constant integer expression

	
c_container_of(_ptr, _type, _member)

	Cast a member of a structure out to the containing type

	Parameters:

	
	_ptr – Pointer to the member or NULL

	_type – Type of the container struct this is embedded in

	_member – Name of the member within the struct

This uses offsetof(3) to turn a pointer to a structure-member into a
pointer to the surrounding structure.

	Returns:

	Pointer to the surrounding object.

	
c_max(_a, _b)

	Compute maximum of two values

	Parameters:

	
	_a – Value A

	_b – Value B

Calculate the maximum of both passed values. Both arguments are evaluated
exactly once, under all circumstances. Furthermore, if both values are
constant expressions, the result will be constant as well.

The comparison of their values is performed with the types given by the
caller. It is the caller’s responsibility to convert them to suitable types
if necessary.

	Returns:

	Maximum of both values is returned.

	
c_min(_a, _b)

	Compute minimum of two values

	Parameters:

	
	_a – Value A

	_b – Value B

Calculate the minimum of both passed values. Both arguments are evaluated
exactly once, under all circumstances. Furthermore, if both values are
constant expressions, the result will be constant as well.

The comparison of their values is performed with the types given by the
caller. It is the caller’s responsibility to convert them to suitable types
if necessary.

	Returns:

	Minimum of both values is returned.

	
c_less_by(_a, _b)

	Calculate clamped difference of two values

	Parameters:

	
	_a – Minuend

	_b – Subtrahend

Calculate _a - _b, but clamp the result to 0. Both arguments are
evaluated exactly once, under all circumstances. Furthermore, if both values
are constant expressions, the result will be constant as well.

The comparison of their values is performed with the types given by the
caller. It is the caller’s responsibility to convert them to suitable types
if necessary.

	Returns:

	This computes _a - _b, if _a > _b. Otherwise, 0 is returned.

	
c_clamp(_x, _low, _high)

	Clamp value to lower and upper boundary

	Parameters:

	
	_x – Value to clamp

	_low – Lower boundary

	_high – Higher boundary

This clamps _x to the lower and higher bounds given as _low and
_high. All arguments are evaluated exactly once, and yield a constant
expression if all arguments are constant as well.

The comparison of their values is performed with the types given by the
caller. It is the caller’s responsibility to convert them to suitable types
if necessary.

	Returns:

	Clamped integer value.

	
c_div_round_up(_x, _y)

	Calculate integer quotient but round up

	Parameters:

	
	_x – Dividend

	_y – Divisor

Calculates x / y but rounds up the result to the next integer. All
arguments are evaluated exactly once, and yield a constant expression if all
arguments are constant.

Note:
(x + y - 1) / y suffers from an integer overflow, even though the
computation should be possible in the given type. Therefore, we use
x / y + !!(x % y). Note that on most CPUs a division returns both the
quotient and the remainder, so both should be equally fast. Furthermore, if
the divisor is a power of two, the compiler will optimize it, anyway.

The operationsare performed with the types given by the caller. It is the
caller’s responsibility to convert the arguments to suitable types if
necessary.

	Returns:

	The quotient is returned.

	
c_align_to(_val, _to)

	Align value to a multiple

	Parameters:

	
	_val – Value to align

	_to – Align to multiple of this

This aligns _val to a multiple of _to. If _val is already a
multiple of _to, _val is returned unchanged. This function operates
within the boundaries of the type of _val and _to. Make sure to cast
them if needed.

The arguments of this macro are evaluated exactly once. If both arguments
are a constant expression, this also yields a constant return value.

Note that _to must be a power of 2, otherwise the behavior will not
match expectations.

	Returns:

	_val aligned to a multiple of _to.

Guaranteed Unix Includes

c-stdaux-unix includes a set of Unix headers. All those includes are
guaranteed and part of the API. See the actual header for a comprehensive
list.

Common Unix Destructors

A set of destructors is provided which extends standard library destructors
to adhere to some adjuvant rules. In particular, they return an invalid
value of the particular object, rather than void. This allows direct
assignment to any member-field and/or variable they are defined in, like:

foo->bar = c_close(foo->bar);

Furthermore, all those destructors can be safely called with the “INVALID”
value as argument, and they will be a no-op.

	
int c_close(int fd)

	Destructor-wrapper for close()

	Parameters:

	
	fd – File-descriptor to pass to destructor, or negative value

Wrapper around close(), but a no-op if a negative value is provided.
Always returns -1.

	Returns:

	-1 is returned.

	
DIR *c_closedir(DIR *d)

	Destructor-wrapper for closedir()

	Parameters:

	
	d – Directory handle to pass to destructor, or NULL

Wrapper around closedir(), but a no-op if NULL is passed. Always
returns NULL.

	Returns:

	NULL is returned.

Common Cleanup Helpers

A set of helpers that aid in creating functions suitable for use with
_c_cleanup_(). Furthermore, a collection of predefined cleanup
functions of a set of standard library objects ready for use with
_c_cleanup_().
Those cleanup helpers are always suffixed with a p.

The helpers that are provided are:

	c_closep(): Wrapper around c_close().

	c_closedirp(): Wrapper around c_closedir().

Index

 _
 | C

_

 	
 	_c_always_inline_ (C macro)

 	_c_boolean_expr_ (C macro)

 	_c_cleanup_ (C macro)

 	_c_const_ (C macro)

 	_c_deprecated_ (C macro)

 	_c_hidden_ (C macro)

 	_c_likely_ (C macro)

 	
 	_c_packed_ (C macro)

 	_c_printf_ (C macro)

 	_c_public_ (C macro)

 	_c_pure_ (C macro)

 	_c_sentinel_ (C macro)

 	_c_unlikely_ (C macro)

 	_c_unused_ (C macro)

C

 	
 	c_align_to (C macro)

 	C_ARRAY_SIZE (C macro)

 	c_assert (C macro)

 	c_assume_aligned (C macro)

 	C_CC_MACRO1 (C macro)

 	C_CC_MACRO2 (C macro)

 	C_CC_MACRO3 (C macro)

 	c_clamp (C macro)

 	c_close (C function)

 	c_closedir (C function)

 	C_CONCATENATE (C macro)

 	c_container_of (C macro)

 	C_DECIMAL_MAX (C macro)

 	C_DEFINE_CLEANUP (C macro)

 	C_DEFINE_DIRECT_CLEANUP (C macro)

 	c_div_round_up (C macro)

 	c_errno (C function)

 	C_EXPAND (C macro)

 	C_EXPR_ASSERT (C macro)

 	c_fclose (C function)

 	c_free (C function)

 	c_less_by (C macro)

 	
 	c_load (C macro)

 	c_load_16be_aligned (C function)

 	c_load_16be_unaligned (C function)

 	c_load_16le_aligned (C function)

 	c_load_16le_unaligned (C function)

 	c_load_32be_aligned (C function)

 	c_load_32be_unaligned (C function)

 	c_load_32le_aligned (C function)

 	c_load_32le_unaligned (C function)

 	c_load_64be_aligned (C function)

 	c_load_64be_unaligned (C function)

 	c_load_64le_aligned (C function)

 	c_load_64le_unaligned (C function)

 	c_load_8 (C function)

 	c_max (C macro)

 	c_memcmp (C function)

 	c_memcpy (C function)

 	c_memset (C function)

 	c_memzero (C function)

 	c_min (C macro)

 	C_STRINGIFY (C macro)

 	C_VAR (C macro)

 nav.xhtml

 Table of Contents

 		
 Introduction

_static/plus.png

_static/file.png

_static/minus.png

